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ABSTRACT: The intense temperatures bat the surface of a space vehlcle
may in some insta.ncés alter the thermal conductivity of the
layers of the skin below the surface. This analysis presents,
as a first epproximation to the problem, a closed form solu-
tion for the case of a thermal conductivity that varies
linearly with distance below the surface. A convective heat
input at the surface which is exponential in timé 'is assumed.
The results should apply for the initial phases of entry in

which the entry velocity and angle are nearly constant.
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HEAT CONDUCTION, DURING REENTRY, OF A FINITE SIAB
WITH A NONCONSTANT THERMAL CONDUCTIVITY
William R. Wells®
RASA langley Research Center
Hampton, Virginia
NOMENCIATURE

= glope of thermal conductivity curve

= constant which depends on the entry velocity and angle

specific heat of material
= arbitrary constants
= V-l, imaginary unit

modified Bessel functions of the first kind of order zero
and one, respectively

= Bessel functions of the first kind of order, zero and one,
respectively

= thermal conductivity

= modified Bessel functions of the second kind of order zero
and one, respectively

= variable in the lapluce transform

= time measured from entry

= temperature and transformed temperature, respectively
= entry velocity

= distance normal to surface

= Bessel functions of the second kind of order zero and one,
respectively

= entry angle

*Aerospace Technologist, Space Mechanics Division.
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0 = B¢
al
P = density of material
T | = thickness of material
@ = constant which depends on entry velocity and angle
Subscripts:
i = initial conditions
t = final conditions

The solution to the problem of one-dimensional heat conduction
through a skin with constant thermel conductivity for the initial phases
of & reentry in which the velocity and entry angle are nearly constant
and for which the convective heat rate is the dominant input can b_e
found in reference 1. The present analysis intends to take the basic
problem in reference 1 and extend it to the case of a vehicle having a
skin whose thermal conductivity varies linearly with deptﬁ below the
surface. Such a solution might serve as a first approximation to a
situation in which the thermal conductivity of the layers of the skin
below the surface are altered by the intense temperature at the surface.

The temperature history through the skin can be obtained from the

one-dimensional heat conduction equation which is

3 _ 3 [, dr
— O — — 1
¢ % Bxé{ ax) | | ()

The boundary conditions will be taken to be same as given in refer-
ence 1 where it is assumed that, at the surface, the heat input is given

by the convective heat rate which during the initial phase of entry can
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be represented by an exponentlal function in time. The back side cf the
skin is insulated and initislly the gkin ias at a constant temperature
throughout.

These cunditicns stated mathematically are

LT
= = a(v.Y)axp[u(v,m}
ox
x=0
¢T
x =
T(x,0) = Ty ’
B(V,¥) and w(V,y) are ccnstants which depend on the satry velooity
and angle.
We will assume that the thermal canductivity varies with depth as
£(x) - Ky + ax (3)
where
kp -~ K4
R . (4)
T

Ki, Ef, and 1 are the initial and finsl velue for the thermal conduc-
tivity and skin thickness, respsctively.

substitution of (3) iate (1) gives

T . N LT

DC - = {81 & axj = % 8 = (5)
. LAE LX

‘he sulution of sousaticn (5) will ve .utained oy the applicatiin of
the laplace transf.rm. The transfora of equation (D) zives
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vhere T(x,s) is the transform of T(x,t), aad € = pe/e?.
The solution of (&) is

T(x,8) - Cjlg(27/6aK) + CuKg(2", osK) + :_1. ™)

when Ig and Kp are the first and seccnd kind of the modified Sesasl
functicas of merc order.

The tranaformations of the boundary ccnditions (2) are
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xp
= T
(x,0) = =

B8

Use of equaticn (8) ia equation (7) gives for the transformed
temperature.

- T
T(x,8) = 1
5

. B i Kl(zﬁsésﬁf)lg(2“f;sﬁ) + 1102 usKp)Kq(2  nsX)

a(s - wleésizy2, ueky)¥y(2" vsky) - Tyie sp)R1(2 veag)

Tha poles of ;(x,s) are at & 2, U, and ibs rusts of tlhe denuminator
of the oxpression in brackets in aquation (9}, Tuese &re all sim.le pules.
“he agparent oranch point currespending to the factor ,ngjs actually
FULViGes an extra ¢ atributicn to the rosidue of the pcle at s - O, becausc

of the vehavior of the sxpressizn in brackets as s ~ 0O,
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Te £ind the poles assuciated with the expression in brackets, we use
the ralaticas To(x) = Joltx) and Ko(x) - 2ni(Vp(1x) + 11p(ix)Js These
peoles are then the routs of

31021 7 Gekp) ) (247 G8Ky) = J3(287/58K, )Y, (217 €akg) = O (10)

Jy and Y; are Bessel funotions cf the first snd second kind of order
cne.
Let 333 be the roots of (10) suah that 1Vs = By, or
,;s‘-—ﬁ‘z (m =1, 2, « « o) (11)
The pcles of ’?(x,-i) aye then at & = 0, w, and —ﬁ:, The values of
Py o©sn be found im refesrsnce 2, pages 204-206. The tempersture is then

given as
BK
T(X,t) = Ti + ....’;..
peut
‘: \/E s K3(27 Wkp)Ig(29 eok) + 13(2 ¥ouke )Kg (2, k)
B lwe Iy (22 WKy )Ry (270uKe) = I3(27 i)k (27 ®Ky)
+ 6w g SN (3 e N
Jo(2Pe V)L (2 VEEp) = Tn(2bm 1/ E)d (g LEe) |
(12)
whel's
vp = 91 KR g Ky = S 2Pm s Ka )20, wip)
4_]‘%{;1(3;@ ARy, Ap) = 91820, R 52 copr (L)

some mumerical cumputalins beswd wa squation (12) ars chown in figurss
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1l and 2. 1n figure 1 & ccmparison is made of the stagnation point tempera-
ture at any depth in the skin tc that at the surfacs for the ocase of the
thermal oonductivity remaining constant, decreasing to cme-half its initial
value, and inoreasing tc twice its initial value. Figure 2 shouws a com—
parison of the temperature in s skin having a nonconstant thermal conduotivity
to one for which the thermal conductivity ias comstant. The curves in
figure 2 show & slight relief in temperature up tc¢ about the middle of
the skin for the case of the thermal conductivity increasing with depth.
However, for the back half of the skin, this verlation in thermal conductivity
ashows & rapid inoreass in temperature. Om ithe otber hand, there iz a
slight temperature rise in the firast half of the zkin for the case of
decreasing thermal conductivity with an appreciable decrease in temperature
for the back half of the skin for this variastion in thsrmal conductivity.

For these figures an entry velocity of 20,000 fi/sec at 400,000 ft.
and an satry angls of -20° was used. The initial valus of the thermal
conductivity used was 0.548 Btu/ft-gec~-OF which corraspends to slectrolytic

cupper at 1,000%F. The results shown are time independent aftizi about

10 seconds.
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FIGURE LEGENDS

Figure l.- Temperature drop across skins having constant and nonconstant
thermal conductivities.

Figure 2.~ Comparison of temperatures in skins having constant and non-
constent thermal conductivities.
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Figure |- Temperature drop across skins having constant and
nonconstant thermal conductivities.
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Figure 2~ Comparisom of temperatures in skins having constant
and nonconstant thermal conductivities.




